39 research outputs found

    Geosynchronous magnetopause crossings and their relationships with magnetic storms and substorms

    Get PDF
    The paper investigates the strengthening of magnetospheric activity related to geosynchronous magnetopause crossings (GMCs). We make a list of GMC events using the empirical magnetopause model (Lin et al., 2010) and hourly averaged OMNI data and find which solar wind and magnetospheric conditions accompany and follow the GMCs. The GMCs are mostly caused by the impact of interplanetary coronal mass ejections (ICMEs) and/or interplanetary shocks often with a strong increase in the density and a moderate increase in velocity. The average solar wind density during the first GMC hour is higher than 20 cm−3 in 70 % cases, while the velocity is higher than 500 km/s in 56 % cases. The hourly interplanetary magnetic field (IMF) BZ is negative in 87 % cases. The average over all events SMU (SML), Kp, and PC indices reach maxima (minima) in 1 hour after the GMC beginning, while the delay of the minimum of the Dst index is usually 3–8 hours. These average time delays do not depend on the strength of the storms and substorms. The SML (Dst) minimum is less than -500 nT (-30 nT) in the next 24 hours in 95 % (99 %) cases, i.e. the GMC events are mostly followed by magnetic storms and substorms. We compare solar wind and magnetospheric conditions for GMCs connected with ICMEs and stream interaction regions (SIRs). Our study confirms that the ICME-related events are characterized by stronger ring current and auroral activity than the SIR-related events. The difference might be explained by the different behavior of the solar wind velocity

    In-situ observations of flux ropes formed in association with a pair of spiral nulls in magnetotail plasmas

    Get PDF
    Signatures of secondary islands are frequently observed in the magnetic reconnection regions of magnetotail plasmas. In this paper, magnetic structures with the secondary-island signatures observed by Cluster are reassembled by a fitting-reconstruction method. The results show three-dimensionally that a secondary island event can manifest the flux rope formed with an As-type null and a Bs-type null paired via their spines. We call this As-spine-Bs-like configuration the helically wrapped spine model. The reconstructed field lines wrap around the spine to form the flux rope, and an O-type topology is therefore seen on the plane perpendicular to the spine. Magnetized electrons are found to rotate on and cross the fan surface, suggesting that both the torsional-spine and the spine-fan reconnection take place in the configuration. Furthermore, detailed analysis implies that the spiral nulls and flux ropes were locally generated nearby the spacecraft in the reconnection outflow region, indicating that secondary reconnection may occur in the exhaust away from the primary reconnection site

    Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause

    Get PDF
    Magnetic flux transfer events (FTEs) are signatures of unsteady magnetic reconnection, often observed at planetary magnetopauses. Their generation mechanism, a key ingredient determining how they regulate the transfer of solar wind energy into magnetospheres, is still largely unknown. We report THEMIS spacecraft observations on 2007-06-14 of an FTE generated by multiple X-line reconnection at the dayside magnetopause. The evidence consists of (1) two oppositely-directed ion jets converging toward the FTE that was slowly moving southward, (2) the cross-section of the FTE core being elongated along the magnetopause normal, probably squeezed by the oppositely-directed jets, and (3) bidirectional field-aligned fluxes of energetic electrons in the magnetosheath, indicating reconnection on both sides of the FTE. The observations agree well with a global magnetohydrodynamic model of the FTE generation under large geomagnetic dipole tilt, which implies the efficiency of magnetic flux transport into the magnetotail being lower for larger dipole tilt

    Climate driven life histories: the case of the Mediterranean Storm petrel

    Get PDF
    Seabirds are affected by changes in the marine ecosystem. The influence of climatic factors on marine food webs can be reflected in long-term seabird population changes. We modelled the survival and recruitment of the Mediterranean storm petrel (Hydrobates pelagicus melitensis) using a 21-year mark-recapture dataset involving almost 5000 birds. We demonstrated a strong influence of prebreeding climatic conditions on recruitment age and of rainfall and breeding period conditions on juvenile survival. The results suggest that the juvenile survival rate of the Mediterranean subspecies may not be negatively affected by the predicted features of climate change, i.e., warmer summers and lower rainfall. Based on considerations of winter conditions in different parts of the Mediterranean, we were able to draw inferences about the wintering areas of the species for the first time

    Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations

    Get PDF
    On 2008-07-11, the THEMIS spacecraft, separated both longitudinally and radially, traversed the dayside low-latitude boundary layer (LLBL) under extended northward IMF. They detected southward flows of magnetosheath plasma from magnetopause reconnection poleward of the northern cusp, which were cold-dense, and had southward velocity similar to 100 km/s and longitudinal extent >3 R-E. These features all agree with a global MHD simulation of the magnetosphere for similar conditions, in which under large geomagnetic dipole tilt, an LLBL forms via poleward-of-the-cusp reconnection first in the summer hemisphere and later in the other. Contrary to the simulation, however, the observed LLBL was mostly magnetically closed, characterized by balanced field-aligned and anti-field-aligned electron fluxes, and was less thick (<= 0.5 R-E). The former suggests comparable reconnection rate in both hemispheres, while the latter suggests the actual reconnection rate being lower, and/or the plasma transport toward the magnetotail being faster, than in the simulation. Citation: Hasegawa, H., et al. (2009), Boundary layer plasma flows from high-latitude reconnection in the summer hemisphere for northward IMF: THEMIS multi-point observations, Geophys. Res. Lett., 36, L15107, doi: 10.1029/2009GL039410

    Mutation analysis of the MDM4 gene in German breast cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MDM4 is a negative regulator of p53 and cooperates with MDM2 in the cellular response to DNA damage. It is unknown, however, whether <it>MDM4 </it>gene alterations play some role in the inherited component of breast cancer susceptibility.</p> <p>Methods</p> <p>We sequenced the whole <it>MDM4 </it>coding region and flanking untranslated regions in genomic DNA samples obtained from 40 German patients with familial breast cancer. Selected variants were subsequently screened by RFLP-based assays in an extended set of breast cancer cases and controls.</p> <p>Results</p> <p>Our resequencing study uncovered two <it>MDM4 </it>coding variants in 4/40 patients. Three patients carried a silent substitution at codon 74 that was linked with another rare variant in the 5'UTR. No association of this allele with breast cancer was found in a subsequent screening of 133 patients with bilateral breast cancer and 136 controls. The fourth patient was heterozygous for the missense substitution D153G which is located in a less conserved region of the MDM4 protein but may affect a predicted phosphorylation site. The D153G substitution only partially segregated with breast cancer in the family and was not identified on additional 680 chromosomes screened.</p> <p>Conclusion</p> <p>This study did not reveal clearly pathogenic mutations although it uncovered two new unclassified variants at a low frequency. We conclude that there is no evidence for a major role of <it>MDM4 </it>coding variants in the inherited susceptibility towards breast cancer in German patients.</p

    The Polar Cusp Seen by Cluster

    No full text
    corecore